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Abstract

We discuss the cosmological evolution of gravitational waves (GWs) after inflation
in a brane-world cosmology embedded in five-dimensional anti-de Sitter (AdS5)
bulk spacetime. In a brane-world scenario, the evolution of GWs is affected by the
non-standard cosmological expansion and the excitation of the Kaluza-Klein modes
(KK-modes), which are significant in the high-energy regime of the universe. We
numerically solve the wave equation of GWs in the Poincaré coordinates of the AdS5

spacetime. Using a plausible initial condition from inflation, we find that, while the
behavior of GWs in the bulk is sensitive to the transition time from inflation to the
radiation dominated epoch, the amplitude of GWs on the brane is insensitive to
this time if the transition occurs early enough before horizon re-entry. As a result,
the amplitude of GWs is suppressed by the excitation of KK-modes which escape
from the brane into the bulk, and the effect may compensate the enhancement of
the GWs by the non-standard cosmological expansion. Based on this, the influence
of the high-energy effects on the stochastic background of GWs is discussed.
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1 Introduction

The stochastic background of gravitational waves (SBGW) generated during
the accelerating phase of the early universe is one of the most fundamental pre-
dictions of the inflationary scenario and this can provide a direct way to probe
the very early universe. In particular, information about extra-dimensions is
expected to be imprinted on the SBGW. Motivated by recent developments in
particle physics, the possibility that our universe is described by brane with
three spatial dimensions embedded in a higher-dimensional space has been
extensively discussed. According to this scenario, gravity propagates in the
extra spatial dimensions, while the standard model particles are confined to
the three dimensional brane. At low-energy scales, four-dimensional general
relativity is successfully recovered and the extra-dimensional effects should
be fairly small. On the other hand, at high-energy scales, the localization of
gravity is not always guaranteed and a significant deviation from the standard
four-dimensional theory is expected. If this is true, the SBGW can provide a
direct probe of the extra-dimensional effects.

In this letter, we focus on the brane-world model proposed by Randall and
Sundrum [1]. In this model, a three dimensional brane is embedded in the five
dimensional anti-de Sitter (AdS5) bulk spacetime (see Ref.[2] for a compre-
hensive review of this brane-world scenario). The important model parameter
is the AdS5 curvature radius ℓ that determines the scale on which Newton’s
force law is modified. Table-top experiments on Newton’s force law impose the
constraint on ℓ that ℓ < 0.1mm [3]. In the context of cosmology, the evolution
of the universe is significantly modified by extra-dimensional effects when the
Hubble horizon becomes shorter than the AdS5 curvature scale, Hℓ > 1. Thus
there is a critical frequency corresponding to the wavelength of the gravita-
tional waves (GWs) that cross the horizon when Hℓ = 1. This frequency is
given by fcrit = 0.2mHz (0.1mm/ℓ)1/2 [4]. Since the GWs with short wave-
lengths re-enter the horizon at high energies, it is expected that the SBGW
above the critical frequency is crucially affected by the extra-dimensional ef-
fects. Theoretically, there are two main effects in the high-energy regime:
(i) the cosmological expansion becomes slow compared with that in four-
dimensional general relativity, which enhances the amplitude of the SBGW
and (ii) the excitation of Kaluza-Klein modes (KK-modes) suppresses the am-
plitude of the GWs on the brane. An interesting point is that these two effects
affect the amplitude of the SBGW in an opposite way. Thus, quantitative cal-
culations of the effects of the KK-modes excitation are essential in predicting
the spectrum of SBGW.

There have been many attempts to understand the effect of the KK-mode
excitation. One way is to work with Gaussian normal coordinates [5,6]. Using
these coordinates, we have performed a numerical study of the high-energy
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effects and showed that the excitation of KK-modes dominates over the ef-
fect of the non-standard cosmic expansion [7]. However, the Gaussian normal
coordinates have a coordinate singularity and the analysis is limited to the
relatively low-energy universe (Hℓ < 1). Recently, Ichiki and Nakamura have
performed a numerical calculation in the high-energy regime (Hℓ > 1) us-
ing a null coordinate system [8,9]. While they reached the same conclusion
as our previous study, they took the initial condition so that the perturba-
tion is constant along a null hypersurface. At present, however, it remains
unclear whether the initial condition imposed by them is appropriate for the
one determined from inflation.

In this letter, we use the Poincaré coordinate system to perform numerical
calculations. The main advantage of this coordinate system is that it covers
the whole bulk spacetime. Using these coordinates, several analytic and semi-
analytic methods ahve been proposed [10,11,12], which work well in the low-
energy regime. Also, the quantum fluctuations in the inflationary epoch have
been discussed in the Poincaré coordinate system [13,14]. Thus, we can set
more plausible initial conditions from the inflationary universe than those in
the Gaussian normal coordinates.

We set up the basic equations and prepare the numerical calculation in Section
2. The numerical results are presented in Section 3. We first discuss the validity
of the initial conditions. Then we attempt to construct the spectrum of SBGW
in the high energy regime of the universe. Finally, Section 4 is devoted to
summary and discussion.

2 Basic equations and Numerical method

2.1 Background metric and evolution equation

In the Randall-Sundrum single-brane model [1], a three-dimensional brane is
embedded in five dimensional anti-de Sitter spacetime (AdS5 bulk). In this
Letter, we specifically consider the AdS5 bulk without a black hole mass and
assume that the matter content on the brane is simply described by a homo-
geneous and isotropic perfect fluid whose equation of state satisfies p = wρ.

In our previous study [7], the Gaussian normal (GN) coordinate system

ds2 = −n2(t, y)dt2 + a2(t, y)dx2 + dy2, (1)

was used to solve the wave equation of GWs. In this coordinate system, the
brane is located at a fixed position y = 0. The lapse function n(t, y) is related
to the warp factor a(t, y) through the relation, n(t, y) = ȧ(t, y)/ȧ(t, y = 0):
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a(t, y)= a0(t)

{

cosh
(

y

ℓ

)

−
(

1 +
ρ(t)

λ

)

sinh
(

y

ℓ

)

}

, (2)

n(t, y)= e−y/ℓ + (2 + 3w)
ρ

λ
sinh

(

y

ℓ

)

, (3)

where ℓ is curvature scale of the AdS5 bulk and λ > 0 is the tension of the
brane. The quantity a0(t) ≡ a(t, y = 0) denotes the scale factor on brane.

Although the GN coordinates (1) are well-behaved near the brane and so it
is convenient to impose the boundary condition on the brane, difficulties arise
when investigating the behavior of GWs in the bulk due to the coordinate
singularity at y = yh(t), where a(t, yh) = 0 (Eq.(2)). This corresponds to the
past null infinity of the AdS5 spacetime. Furthermore, a space-like t =const.
hypersurface approaches null near the coordinate singularity. Hence, a sophis-
ticated treatment of boundary conditions near the singularity is required. As
a result, the previous numerical investigation was restricted to the analysis at
relatively low-energy scales.

In this paper, in order to extend our previous study to the analysis in the
high-energy regime, we use the Poincaré coordinate system (τ,x, z). In the
Poincaré coordinate system, the brane is moving in the static AdS5 bulk [15].
The metric is given by

ds2 =

(

ℓ

z

)2

{−dτ 2 + (δij + hij)dxidxj + dz2}, (4)

where hij is the tensor perturbation satisfying the transverse and the traceless
conditions. In this metric, the trajectory of the brane is described as (τb, zb):

τb = T (t), zb =
ℓ

a0(t)
, (5)

where the variable t is the cosmic time on brane, which has the same meaning
of time t as used in the GN metric (1). From the junction conditions, the
Friedmann equation and the conservation law become [16]:

H2(t) =
(

ȧ0

a0

)2

=
κ2

4

3
ρ
(

1 +
ρ

2λ

)

, ρ̇ = −3(1 + w)Hρ, (κ2
4 = 8πG), (6)

where the dot denotes a derivative with respect to t and H is the Hubble
parameter defined by H ≡ ȧ0/a0. The function T (t) is given by

Ṫ (t) =
1

a0

√

1 + (Hℓ)2. (7)

Hereafter, unless otherwise mentioned, we focus on the evolution of GWs
during the radiation dominated epoch after inflation, i.e., w = 1/3. In this
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case, the solutions for the scale factor a0(t) and the normalized energy density
defined by ǫ(t) ≡ ρ(t)/λ are expressed as (e.g., [17]):

a0(t) = a∗

(

2t2 + tℓ

2t2
∗
+ t∗ℓ

)1/4

, ǫ(t) ≡ ρ(t)

λ
=

ℓ2

8t2 + 4tℓ
. (8)

The variables a∗ and t∗ are numerical constants, whose meanings will be given
in next section.

Next consider the tensor perturbation hij in the metric (4). For convenience, we
decompose the quantity hij in spatial Fourier modes as hij = hk(τ, z)eik·xêij ,
where êij represents a transverse-traceless polarization tensor. Then the evo-
lution equation for the perturbation hk(τ, z) becomes

∂2h

∂τ 2
− ∂2h

∂z2
+

3

z

∂h

∂z
+ k2h = 0. (9)

Here we simply omit the subscript k. It is known that the above equation has
the following general solution (e.g., [11,13]):

h(τ, z) =
∫

∞

0
dm

{

h̃1(m) z2 H
(1)
2 (mz) ei ω τ + h̃2(m) z2 H

(2)
2 (mz) e−i ω τ

}

,

(10)

where ω2 = m2 +k2. The functions H
(1)
2 and H

(2)
2 denote the Hankel functions

of first and second kind respectively and the coefficients h̃1,2(m) are arbitrary
functions of m. The above expression implies that the GWs propagating in the
bulk are generally described as a superposition of the zero mode (m = 0) and
the KK-modes (m > 0). In the brane-world where the AdS5 bulk is bounded
by the brane, the evolution equation of GWs must be solved by imposing
the boundary condition at the brane. The boundary condition at the brane
is determined from the junction condition [2]. Imposing Z2 symmetry on the
brane, it is given by





∂

∂τ
−
√

1 + (Hℓ)2

Hℓ

∂

∂z



h

∣

∣

∣

∣

∣

∣

z=zb(t)

= 0. (11)

2.2 Initial condition

The initial condition for the perturbed quantity h just after inflation is de-
termined by the quantum fluctuations in the inflationary epoch. According to
Ref. [16], the GN coordinates (1) are a useful spatial slicing in the inflation-
ary epoch and the KK-modes defined in this slicing are shown to be highly
suppressed during the inflation. Thus, the zero-mode solution in the GN coor-
dinates gives a dominant contribution to the metric fluctuation which is given
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by

h(t, y) = C(−kη)3/2H
(1)
3/2(−kη), (12)

where C is a normalization constant and η is the conformal time. On the other
hand, the mode function given in Poincaré coordinates (10) can be rewritten
in terms of the GN coordinate defined with respect to the inflationary brane
as [13]:

h(τ, z) =
∫

∞

0
dm {η sinh(y/ℓ)}2

{

h̃1(m) H
(1)
2 (mη sinh(y/ℓ)) e−i ω η cosh(y/ℓ)

+ h̃2(m) H
(2)
2 (mη sinh(y/ℓ)) ei ω η cosh(y/ℓ)

}

. (13)

Comparing (12) with (13), we see that the zero-mode solution given in the
inflationary epoch cannot be simply expressed in terms of the zero-mode so-
lution in the Poincaré coordinates, indicating that there should be mixtures
of KK-modes to express the zero-mode solution in the inflationary epoch.
Nevertheless, in the long-wavelength limit k → 0, both the zero-mode solu-
tions become constant over the time and the bulk space and they coincide
with each other. Since we are specifically concerned with the evolution of
long-wavelength GWs after inflation, the constant mode, i.e., h = const. and
dh/dτ = 0, seems a natural and a physically plausible initial condition for our
numerical calculation in the Poincaré coordinate.

However, a subtle point arises when we consider the evolution of GWs in the
radiation dominated epoch. In this case, the mode decomposition becomes
generally impossible in GN coordinates due to the non-separable form of the
background metric (1)–(3), and the constant mode is not necessarily a solution.
From the viewpoint of the Poincaré coordinate in the AdS5 bulk, the mixture
of KK-modes could be significant in the high-energy regime of the universe
and this is even true in the long-wavelength GWs. Indeed, even in the low-
energy regime (ρ/λ ≪ 1), the mixture of KK-modes has been shown to be
essential for the recovery of the standard four-dimensional result [11].

Hence, the constancy of the GW amplitudes after inflation cannot be always
guaranteed even on super-horizon scales. Depending on the choice of the bulk
coordinate, the mode h(t0, z) = const. may not be a good approximation to
the initial condition for numerical calculation if one tries to impose the initial
condition in the radiation dominated epoch. In order to clarify these subtleties,
the validity of the initial condition h = const., must be checked. This point
will be carefully discussed in section 3.1.
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2.3 Numerical simulation

To solve the wave equation (9) numerically, one problem is that the com-
putational domain should be finite. We must introduce an artificial cutoff
(regulator) boundary in the bulk at z = zreg and impose the boundary con-
dition. Here, we impose the Neumann condition at the regulator boundary,
i.e., (∂h/∂z)z=zreg

= 0. The location of the boundary is set to zreg = 30–100ℓ,
which is far enough away from the physical brane to avoid artificial suppres-
sion of light KK-modes. We checked that the amplitude of GWs on the brane
is fairly insensitive to the location of regulator boundaries. Further, we stop
the numerical calculations before the influence of the boundary condition at
z = zreg can reach the physical brane zb. With these treatments, all the results
presented in Section 3 are free from the effect of regulator boundary.

The numerical calculations of wave equation (9) were carried out by employ-
ing the Pseudo spectral method [18]. To be precise, we adopt a Tchebychev
collocation method with Gauss-Lobatto collocation points. To implement this,
instead of using the Poincaré coordinates (τ, z) directly, we use the following
new coordinates (t, ξ):

τ = T (t), z =
1

2
[ {zreg − zb(t)} ξ + {zreg + zb(t)} ] (14)

so that the locations of both the physical and the regulator branes are kept
fixed. Adopting this coordinate system, the perturbed quantity h(t, ξ) is first
transformed into the Tchebychev space through the relation, h(t, ξ) =

∑N
n=0 hn(t)Tn(ξ)

in a finite and a compact domain, −1 ≤ ξ ≤ 1. Here, the functions Tn(ξ) de-
note the Tchebychev polynomials, defined by Tn(ξ) ≡ cos(n cos−1(ξ)). We then
discretize the ξ-axis to the N +1 points (collocation points) using the inhomo-
geneous grid ξn = cos(nπ/N). With this grid, fast Fourier transformation can
be applied to perform the transformation between the amplitude h(t, ξ) and
the coefficients hn(t). In this letter, we specifically set the collocation point
as N = 512 or 1024. The partial differential equation (9) is now reduced to a
set of ordinary differential equations for the coefficients hn(t). Hence, one can
obtain the time evolution of hn(t) by simply adopting the Predictor-Corrector
method based on the Adams-Bashforth-Moulton scheme.

3 Results

Given the initial condition h(t0, ξ) = const., the remaining free parameters in
our numerical simulation are the wave number k and the initial time t0. For
convenience, we set the wave number k to k = a∗H∗, that is, the GW just
crosses the Hubble horizon at the time t = t∗ (see Eq.(8)). Also, we introduce
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the quantity s0 given by s0 ≡ a(t0)H(t0)/k, which represents the physical scale
of the long-wavelength GW normalized by the Hubble horizon at an initial
time t0. Thus, the free parameters may be represented by the dimensionless
energy at the horizon-crossing time, ǫ∗ ≡ ǫ(t∗) and the normalized wavelength
at initial time, s0. In the following, the numerical results are presented for
various choices of the parameters (s0, ǫ∗).

3.1 Sensitivity to the initial condition

Let us first consider the initial condition after inflation and check the validity
of the assumption h(t0, ξ) = const. for long-wavelength GWs. For this purpose,
we plot the time evolution of GWs in the Poincaré coordinate system in Figure
1. The upper panel shows the case of the de Sitter brane by setting the equation
of state on the brane to w = −1. The lower panel shows the case of the
radiation-dominated Friedmann brane (w = 1/3). In both panels, we set the
comoving wave number to k =

√
3/ℓ or ǫ∗ = 1.0 with s0 = 100.

In the upper panel of Figure 1, the universe on the brane experiences acceler-
ated cosmic expansion and the wavelength of GWs becomes longer than the
Hubble horizon. The resultant GW amplitude remains constant not only on
the brane but also in the bulk. On the other hand, in the case of the Fried-
mann brane (lower), the wavelength of GW becomes shorter than the Hubble
horizon at τ ≈ −1. In the bulk, a complicated oscillatory behavior of perturba-
tions was found in the region that is causally connected to the physical brane.
This indicates that the excitation of KK-modes occurs even if the wavelength
of GWs is still outside the Hubble horizon.

These results are somewhat surprising from the viewpoint of the AdS5 bulk,
because the different behaviors simply arise from the difference in the mo-
tion of the brane. While the trajectory of the brane is described by a straight
line (d2zb/dτ 2 = 0) in the case of the de Sitter brane, the trajectory of the
Friedmann brane describes an arc with a non-zero curvature d2zb/dτ 2 < 0. The
situation might be very similar to the moving mirror problem in an electromag-
netic field (e.g., Chap. 4.4 of Ref. [19]), where the acceleration or deceleration
of the mirror yields the creation of photons due to vacuum polarization. In our
present case, the excitation of the KK-modes arises due to the deceleration of
the moving brane.

The results in Figure 1 suggest that the initial condition h(t0, ξ) = const. may
be validated if we set the initial condition just after the end of inflation. How-
ever, the constancy of the long-wavelength mode would not be guaranteed in
the case of the radiation dominated epoch, as discussed in section 2.2. This
implies that the choice of the initial time t0 is crucial when setting the initial
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condition at the radiation dominant epoch. Thus, for quantitative investiga-
tion of the GWs generated during inflation, the sensitivity to the choice of the
initial time should be examined.

In Figure 2, the dependence of the evolution of GWs on the initial time is
plotted by varying the parameter s0. Left panels show the snapshots of the
amplitude h(τ, z) in the bulk when the wavelength of GWs just becomes five
times larger than the Hubble horizon, i.e., a0H/k = 5. On the other hand, right
panels show the time evolution of GWs projected on the brane. Clearly, in the
bulk, the amplitude of GWs is very sensitive to the choice of the parameter
s0, or equivalently, the initial time t0. The resultant wave form away from the
physical brane does not show any convergence even in the low-energy case
(ǫ∗ = 0.1). By contrast, on the brane, the GW amplitudes tend to converge if
we set the initial time t0 early enough (or set s0 large enough).

Although we do not fully understand the reason for this convergence, as far as
the GWs on the brane are concerned, the evolution of GW amplitudes becomes
insensitive to the choice of the initial time when setting the parameter s0 large
enough, s0 & 50, for instance.

3.2 Influence of high-energy effects on spectrum of gravitational wave back-

ground

Having validated the setup of the initial conditions, we now attempt to clarify
the high-energy effects of the GWs and evaluate the spectrum of the SBGW
on the brane. To quantify these, we wish to discriminate the influence of KK-
mode excitation in the bulk from the non-standard cosmological expansion
caused by the ρ2-term in the Friedmann equation (6). For this purpose, we
introduce the reference wave href , which is a solution of the four-dimensional
wave equation just replacing the scale factor and the Hubble parameter de-
fined in the standard Friedmann equation with those defined in the modified
Friedmann equation (Eqs. (6) and (8)):

ḧref + 3Hḣref +

(

k

a0

)2

href = 0. (15)

Comparing the numerical simulations with the solution of the wave equation
(15), the effect of the excitation of KK-modes can be quantified.

Figure 3 shows the squared amplitude of the GWs, h2
5D and h2

ref as functions
of the scale factor a0. The upper panel shows the low-energy case (ǫ∗ = 0.1),
while the lower panel depicts the result in the high-energy regime (ǫ∗ = 10).
In both panels, the horizon re-entry time is set to a0 = 1. As we increase
the energy scale at horizon crossing time, the GW amplitude h5D becomes

9



significantly reduced compared to the reference wave, href . Since the late-time
evolution of GWs simply scales as h ∝ 1/a0 in both h5D and href , the results
may be interpreted as the excitation of KK-modes during horizon re-entry,
which are caused by an escape of five-dimensional graviton from the brane to
the bulk. Note that the normalized energy density at horizon re-entry time,
ǫ∗ is related to the observed proper frequency 2π f = k/a0(ttoday) as

f

fcrit
=

(√
2 − 1

ǫ∗

)1/4

(ℓH∗)
1/2 =

(√
2 − 1

ǫ∗

)1/4

(ǫ2
∗
+ 2ǫ∗)

1/4, (16)

where the critical frequency fcrit is defined by ℓH∗ = 1 or ǫ∗ =
√

2 − 1,
which typically yields fcrit = 0.2mHz (0.1mm/ℓ)1/2 [4]. Thus, one expects from
Figure 3 that the deviation from the standard four-dimensional prediction for
the spectrum of SBGW becomes more prominent above the critical frequency,
f > fcrit.

In order to estimate the influence of KK-mode excitation on the spectrum of
SBGW, the frequency dependence of the GW amplitudes is examined based on
the results in Figure 3. Figure 4 shows the ratio of the amplitudes |h5D/href | as
a result of the KK-mode excitation. The ratio is evaluated at the low-energy
regime long after the horizon crossing time and is plotted as a function of
the frequency f/fcrit. As a reference, we also show the convergence properties
of the ratio |h5D/href | by varying the initial time; s0 = 25, 50, 100, 150 and
200. Clearly, the ratio |h5D/href | monotonically decreases with the frequency
and the suppression of amplitude h5D becomes significant above the critical
frequency fcrit (vertical solid line). Using the data points in the asymptotic
region ǫ∗ ≥ 5 (or H∗ℓ ≥

√
35), we try to fit the ratio of amplitudes with

s0 = 200 to a power-law function. The result based on the least-square method
becomes

∣

∣

∣

∣

∣

h5D

href

∣

∣

∣

∣

∣

= α

(

f

fcrit

)

−β

(17)

with α = 0.76 ± 0.01 and β = 0.67 ± 0.01, which is shown as a dashed line in
Figure 4 1 .

The power-law fit (17) can be immediately translated to the spectrum of
SBGW as follows. To evaluate the spectrum, we conventionally use the density
parameter of SBGW ΩGW(f) defined by [20] :

ΩGW(f) ≡ 1

ρc

dρGW

d log f
∝ f 2h2, (18)

where ρGW is the energy density of SBGW and ρc is the critical density. Above
the critical frequency f > fcrit, the cosmological expansion at horizon re-entry

1 The uncertainty of the fitting parameters is estimated assuming that each data
point follows a standard normal distribution.
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time is dominated by the ρ2-term in the Friedmann equation (6) and we have
H∗ ∝ a−4

∗
. For the reference wave href , this gives href ∝ a∗/a0 ∝ f−1/3, because

of the relation 2πf ∝ k ∝ a∗H∗. Thus, substituting this into the expression
(18), the blue spectrum ΩGW ∝ f 4/3 is obtained if we neglect the excitation of
KK-modes. Consequently, from (17), if we combine the effects of the KK-mode
excitation, the SBGW spectrum becomes nearly flat, i.e.,

ΩGW ∝ f 0, (19)

above the critical frequency. This result seems almost indistinguishable from
the standard four-dimensional prediction and slightly contradicts with the re-
sult by Ichiki and Nakamura [9], who predict a relatively steeper spetrum,
ΩGW ∝ f−0.46 from the numerical simulation based on a null coordinate sys-
tem. At present, the reason for this discrepancy is unclear, however, it might
be ascribed to the differences of initial conditions arising from the different
choices of the bulk coordinates. Although it is premature to discuss the de-
tectability of the SBGW, the significance of KK-mode excitations should play
an important clue to probe the signature of extra-dimensions.

4 Summary and Discussion

We numerically studied the behavior of GWs in the high-energy regime of
the universe in the Randall-Sundrum brane-world model. In contrast to the
previous study in the GN coordinates, we used the Poincaré coordinate sys-
tem in which the brane is moving in the AdS5 background. We numerically
investigated the evolution of GWs in the radiation dominated universe.

We have confirmed that the constant mode, h(z, τ) =const., in the Poincaré
coordinates just after inflation is a plausible initial condition from inflation. In
the radiation dominated epoch, however, the constant mode does not hold in
the bulk. Thus, in principle, we have to start our numerical calculations just
after inflation. Fortunately, however, the resultant amplitude of the GWs on
the brane becomes insensitive to the initial time t0 of our numerical simulation
if we set t0 sufficiently early. In other words, our numerical result is insensitive
to the transition time from inflation to the radiation dominated epoch if the
perturbation re-enters the horizon long enough after the transition.

Based on these discussions, we turn to focus on the frequency dependence
of the high-energy effects in order to predict the spectrum of SBGW. We
found that the excitation of KK-modes compensates the effect of non-standard
cosmological expansion. As a result, the density parameter of SBGW scales
as ΩGW ∝ f 0 above the critical frequency fcrit = 0.2mHz (0.1mm/ℓ)1/2.
The result seems indistinguishable from the prediction in the standard four-
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dimensional theory and slightly contradicts with the result by Ichiki and Naka-
mura [9]. The most striking result of our work is that the behavior of the GWs
in the bulk sensitively depends on the transition time. This feature implies that
the constant initial condition in the Poincaré coordinate does not agree with
the constant initial condition on the null hypersurface even on super-horizon
scales. In this sense, the result obtained by Ichiki and Nakamura [9] may not
necessarily agree with our results. In addition, the present numerical analysis
is restricted to the frequency range 0.3 . f/fcrit . 15. It is thus premature to
discuss the detectability of the SBGW by extrapolating our numerical results
to the high-frequency bands observed via future GW detectors. Nevertheless,
the significance of KK-mode excitations above the critical frequency holds the
clue to probe the signature of extra-dimensions and/or to constrain on brane-
world models. In this respect, a more quantitative and precise prediction for
the spectrum of SBGW should deserve a further investigation.

Recently, Kobayashi and Tanaka [21] analytically estimated the effect of KK-
mode excitation at low-energy scales. According to their result, the amplitude
of the GWs on the brane depends on the transition time as well as the energy
scale ǫ∗. This would not be a contradiction with the present numerical result
because we set the initial condition in the high-energy regime Hℓ > 1, where
the low-energy approximation used by the authors does not work. Thus, in
order to understand our result, we need an analytical study of the KK-mode
excitation in the high-energy regime. This is a challenging future work.
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Fig. 1. The evolution of a GW in the bulk. The upper panel shows the case of a de
Sitter brane, while the lower panel is the case of a Friedmann brane. In both panels,
we set the comoving wave number to k =

√
3/ℓ or ǫ∗ = 1.0 with s0 = 100.
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Fig. 2. Left: Snapshots of the GW amplitudes in the bulk for various choices of
initial time. The snapshots were taken when the wavelength of GWs becomes five
times longer than the Hubble horizon, i.e., a0H/k = 5. Right: Evolved results of
GWs projected on the brane starting with the various initial times.
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Fig. 3. Squared amplitude of GWs on the brane in low-energy (upper) and the
high-enery (lower) regimes. In both panels, solid lines represent the numerical solu-
tions of wave equation (9). The dashed lines are the amplitudes of reference wave
href obtained from equation (15).
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